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Transport in nonequilibrium systems with position-dependent mobility

Rolf H. Luchsinger*
Department of Physics and Astronomy, University of British Columbia, Vancouver British Columbia, Canada V6T 1Z1

~Received 28 April 1999!

We propose a transport mechanism for overdamped diffusing particles. The mechanism is based on a
position-dependent mobility and on breaking detailed balance. Using a two-state model, we show that the
transport direction is given by the phase shift between mobility and potential or mobility and transition rate. No
symmetry breaking potential as employed in ratchet-type transport models is needed.

PACS number~s!: 05.40.Jc, 05.60.Cd, 05.70.Ln, 87.10.1e
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Transport of overdamped diffusing particles has been
tensively studied in recent years@1–4#. These thermal ratche
models allow for a macroscopic directed motion of the d
fusing particles without macroscopic external forces. T
key features of these models are that first the spatial sym
try of the system is broken by a periodic sawtooth poten
~the ratchet! and second, the system is driven either by
external microscopic periodic forcing@1,3#, by colored noise
@5#, or by considering a two-state system where the transi
rates do not obey detailed balance@2#. Next to the physical
applications of these models, it was also argued that t
may be fundamental for the understanding of molecular m
tors.

A few years earlier Bu¨ttiker showed that state-depende
diffusion can induce transport@6#. This system is defined by
an overdamped particle in a periodic symmetric poten
with a periodic position-dependent diffusion rate. The spa
symmetry is broken by a phase shift between the poten
and the diffusion rate, resulting in a probability current
equilibrium. The diffusion rate is related to the mobilitym
and the temperatureT by the Einstein relationD5mkBT.
Since the mobility is kept constant in this model, the diff
sion rate varies due to a position-dependent temperature
the model actually focuses on transport in a periodic te
perature field. However, the diffusion rate can vary due
position-dependent mobility, even for an isothermal proce
The mobility of a spherical particle in a liquid is given by th
Stokes lawm05(6pha)21 with h the viscosity of the liquid
and a the radius of the particle. It is well known that th
mobility becomes smaller when the particle approache
wall surrounding the liquid@7,8#. A particle diffusing close
to a surface has a position-dependent mobility and there
also a position-dependent diffusion rate, although the te
perature is constant.

To stress the difference between mobility and tempe
ture, we set up the same model as Bu¨ttiker @6#, however, the
diffusion rate is position-dependent due to the mobility a
not the temperature. Consider an overdamped diffusing
ticle in a periodic potentialV(x1L)5V(x) with D(x)
5m(x)kBT, m(x1L)5m(x) and T5const. The Fokker-
Planck equation for this system is given by

] tP1]xJ50, ~1!

*Present address: ABB Corporate Research Ltd., CH-5
Baden-Da¨ttwil, Switzerland.
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with the probability current@8,9#

J52m~x!~P]xV1kBT]xP!. ~2!

In the steady state,] tP50 and thusJ is constant. Solving
Eq. ~2!, the steady-state probability distribution is given b

P~x!5S C2
J

kBTE
x
expS V~x8!

kBT D
m~x8!

dx8D expS 2V~x!

kBT D .

It follows that P(x)ÞP(x1L) for nonvanishingJ, since
m(x) is positive definite and the integral fromx to x1L does
not vanish. A bounded equilibrium probability distribution
only possible forJ50, leading to the well-established resu
P(x)5C exp@2V(x)/kBT# independent of the mobility.
Hence a position-dependent mobility in this model does
lead to an equilibrium probability current contrary to
position-dependent temperature as was shown by Bu¨ttiker
@6#.

However, a position-dependent mobility does have an
pact for systems out of equilibrium. Consider a on
dimensional system with the periodic mobilitym(x)5m0@1
1c sin(2px/L)# and without any potential. The amplitude o
the modulationc is restricted to 0<c,1. Particles diffuse
freely until they are absorbed at one of the boundaries
6L/2. The probability for a particle initially released atx
50 to be absorbed atL/2 is @10#

p~L/2u0!5E
2L/2

0

m21~x!dxY E
2L/2

L/2

m21~x!dx

and p(2L/2u0)512p(L/2u0). For c50.5, the ratio of the
probabilities can be calculated top(L/2u0)/p(2L/2u0)52.
The particle is absorbed with higher probability at the boun
ary, where the mobility along the way is higher. Thus t
mobility breaks the symmetry of this nonequilibrium pro
lem. Note, however, that the integral mobility over a peri
L is the same in the positive and negative direction so t
p(Lu0)/p(2Lu0)51. On the other hand, the system wou
reach an equilibrium distribution that is constant and ind
pendent of the mobility with reflecting boundaries on bo
sides.

In order to take advantage of the mobility in a transp
mechanism, the system needs to be driven out of equ
rium. Transport in a two-state model was studied by Pr
5
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et al. @2#. They showed that transport can only occur wh
the transition rates between the states are driven away
their spontaneous values by an external action so that B
mann equilibrium is violated and when the spatial symme
is broken by an asymmetric potential. Since symmetry
be broken by mobility, the question is whether transport
this model is possible with a symmetric potential togeth
with a phase-shifted position-dependent mobility. The s
tem is described by

] tP11]xJ152v1P11v2P2 ,

] tP21]xJ251v1P12v2P2 , ~3!

with the probability currents

J152m1~x!~P1]xV11kBT]xP1!,

J252m2~x!~P2]xV21kBT]xP2!. ~4!

We assume a periodic symmetric potential at state 1 an
constant potential at state 2, while the mobility is constan
state 1 and a periodic function of the position at state 2:V1
5V0cos(2px/L), V250, m15m0 , m25m0@1
1c sin(2px/L)#. Detailed balance is violated by considerin
constant transition rates defined asv15Vv2 , v25const.
The system is illustrated in Fig. 1.

A simple analytical solution of Eq.~3! is not possible
under these conditions. We expand the probability dens
in plane wavesPl(x)5(nal(n)exp(i2pnx/L) with the state
index l 51,2. The resulting set of linear equations togeth
with the norm condition

E
2L/2

L/2

P1~x!1P2~x!dx51 ~5!

can be solved using standard numerical methods@11#. Due to
the smooth form of the potentials and mobilities the ser
expansion is well converged atn540. The resulting averag
transport velocityv5(J11J2)L as a function of the dimen
sionless rateLAv2 /D0 is shown in Fig. 2~lines! for differ-
ent values of the modulation amplitudec of m2. The typical
stochastic-resonancelike behavior is found even quan
tively similar to the original model@2#. As expected, the

FIG. 1. The potential and mobility for the two-state model w
symmetric potential. In state 1, the potential~solid line! is periodic,
while the mobility~dashed line! is constant. In state 2, the potenti
~solid line! is constant, while the mobility~dashed line! is periodic.
The transition rates between the states arev1 and v2. In order to
obtain a net current,V1 andm2 have to be phase shifted.
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velocity decreases for decreasingc and vanishes for constan
m2 given by c50 ~not shown!. Thus, the important role o
the position-dependent mobility is clearly demonstrated.

As an alternative approach, we have investigated Eq.~3!
by Monte Carlo simulations. The particle position at statel is
updated according to@12,13#

Dx5@kBT]xm l1m l~2]xVl !#Dt1~2Dtm lkBT!1/2X, ~6!

with X a normal distributed random number with zero me
and standard deviation equal to unity. Note the term prop
tional to the derivative of the mobility that is important fo
our model. The transition between the states are Poisson,
is, at each time stepDt, a particle in state 1 jumps to state
if R,v1Dt with R a uniformly distributed random numbe
between 0 and 1 and vice versa for a particle at state 2.
simulations~crosses! exhibit quantitative agreement with th
direct solutions of Eq.~3! as can be seen in Fig. 2.

In this model, the direction of the probability current
defined by the phase shift betweenV1 andm2. The mecha-
nism can be understood in the following way~Fig. 1!: A
particle at state 1 drifts to the potential minimum. Underg
ing a transition from the potential minimum at state 1 in
state 2, the particle will experience a higher mobility on t
right side in this state. Thus, the probability that the parti
falls into the next potential well on the right side when r
turning to state 1 is higher than falling into the next well o
the left side. The symmetry is broken and a net probabi
current to the right occurs. As it is typical for these two-sta
models transition rates, diffusion and period length a
strongly interconnected. For instance, the system is mos
ficient atLAv2D053.2 for c50.9.

The main result from this section is that the role of sy
metry braking can be overtaken by the mobility. Since this
the main function of the potential in the model of Prostet al.
@2#, one might wonder whether a transport mechanism i
two-state model without potentials is possible. The simpl
scheme consists of a periodic mobility in state 1 and a c

FIG. 2. The scaled drift velocity in the symmetric potenti
model for different values of the modulation amplitudec of the
mobility m2. The lines are the direct solutions of the coupl
Fokker-Planck equations, the crosses represent the results from
Monte Carlo simulation. The calculations are done for a parti
with radius a50.215 mm in water, L52a, T5300 K, D0

5m0kBT, V05210kBT and V58. The velocity is the average
over 1000 particles after a simulation time of 5 s.
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stant mobility in state 2 with constant potentials in bo
states:m15m0@11c sin(2px/L)#, m25m0 and V15V250.
Detailed balance is broken by assuming a local transition
v15Vu(x) with the periodic functionu(x)51 for ux
2nLu,L/100 andu(x)50 otherwise~Fig. 3!.

The local transition ratev1 is not suited for an expansio
in plane waves and our approach for a direct solution of
~3! fails. Therefore we report only results from numeric
simulation where the treatment of local transition rates
trivial. As shown in Fig. 4, transport is obviously possible
the potential-free model. The average velocity shows qu
tatively the same behavior as in Fig. 2; the transport velo
vanishes forLAv2 /D0→0 andLAv2 /D0→` and reaches
one maximal value in between. However, the direction of
probability current is opposite. As shown in Fig. 3, a partic
can make a transition from state 1 to state 2 atx. In state 2,
the mobility is constant and the particle will with equal pro
ability return to state 1 atx1D andx2D. Back in state 1,
the mobility is in both cases higher on the left side. T
particle atx1D will with higher probability make the nex
transition to state 2 atx than atx1L. Similar, a particle at
x2D will with higher probability make a transition to state
at x2L than atx. There is a net drift toward the left side
resulting in a negative probability current.

The spatial symmetry is broken in this model by a pha
shift of the mobility and the local transition rate ofL/4 at
state 1. If the transition ratev1 is localized at the maxima o
minima of m1(x), one would expect no resulting probabilit
current due to the symmetry of the system. We define

FIG. 3. Potential free two-state model. The mobility is period
at state 1 and constant at state 2. The transition ratev1 is local
while v2 is constant.

FIG. 4. The scaled drift velocity for the potential free mod
The parameters arec50.9,V51000. Other parameters are the sam
as in Fig. 2. The average of 5000 particles after a simulation tim
15 s is taken to obtain good statistics.
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phase shiftd by v1(x)5Vu(x2d). The transport velocity
as a function ofd/L is shown in Fig. 5. For these simula
tions, v2 is set to the optimal value while all the other p
rameters remain the same. The velocity vanishes ford/L5
60.25 and is positive ford/L.0.25. Depending ond, the
probability current becomes positive, negative, or vanish
The extremal values for the average velocity are sligh
shifted fromd50 andd50.5.

To summarize, the simplest mobility-induced transp
mechanism is an overdamped diffusing particle in a tw
state model with~i! a periodic position-dependent mobility a
one state and~ii ! a local phase-shifted transition rate at t
same state while mobility and transition rate in the oth
state are constant. The direction of the transport current
pends on the phase shift between transition rate and mob
Contrary to previous models, no macroscopic or microsco
forces are involved in the transport mechanism. The origin
the transport is a nonequilibrium statistical mechanics p
cess.

A particle restricted to a one-dimensional diffusion
short distance to a rippled surface experiences a posit
dependent mobility, since depending on its location it
closer to or further away from the surface. The molecu
motor protein kinesin moves close along the periodic str
ture of the microtubule and will therefore experience
position-dependent mobility. The two-state model was p
posed to be a model for molecular motors@2# and it was
natural to investigate the role of a position-dependent mo
ity in this framework. We have shown that a positio
dependent mobility can replace the ratchet potential, wh
the qualitative behavior of the motor remains the same. T
the main role of the mobility in molecular motors might be
establishing a mechanism for breaking the spatial symme
Remarkably, members of the kinesin superfamily can mo
in different directions, although a given motor only moves
one direction@14#. The direction is shown to be a function o
the motor domain that is very similar for all the members.
our model, the transport direction solely depends on
phase shiftd between either the local transition and the m
bility or the mobility and the symmetric potential. Motor
moving in different directions are distinguished by a diffe
ent phase shiftd. Details of the role of a position-depende

of

FIG. 5. Average velocity in the two-state model without pote
tials as a function of the phase-shiftd/L between the mobilitym1

and the local transition ratev1.
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PRE 62 275TRANSPORT IN NONEQUILIBRIUM SYSTEMS WITH . . .
mobility in kinesin models will be discussed elsewhere@15#.
In conclusion, we have shown that a position-depend

mobility can lead to transport very similar to that for mode
based on asymmetric potentials. Mobility can take over
role of the potential. However, the underlying mechanism
different: A particle with a position-dependent mobility ten
to diffuse toward the higher mobility but is not forced to d
so. Mobility-induced transport as a concept of possibilit
rather than forces might be a fruitful way to think abo
v

nt

e
s

s

biological, social, and financial systems that are so often
of equilibrium.
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