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Transport in nonequilibrium systems with position-dependent mobility

Rolf H. Luchsingef
Department of Physics and Astronomy, University of British Columbia, Vancouver British Columbia, Canada V6T 171
(Received 28 April 1999

We propose a transport mechanism for overdamped diffusing particles. The mechanism is based on a
position-dependent mobility and on breaking detailed balance. Using a two-state model, we show that the
transport direction is given by the phase shift between mobility and potential or mobility and transition rate. No
symmetry breaking potential as employed in ratchet-type transport models is needed.

PACS numbd(s): 05.40.Jc, 05.60.Cd, 05.70.Ln, 87.1@

Transport of overdamped diffusing particles has been inwith the probability currenf8,9]
tensively studied in recent yedrs—4]. These thermal ratchet
models allow for a macroscopic directed motion of the dif- J=—u(X)(Pa,V+kgTdP). 2
fusing particles without macroscopic external forces. Two
key features of these models are that first the spatial symmén the steady state};P=0 and thusJ is constant. Solving
try of the system is broken by a periodic sawtooth potentiaEd- (2), the steady-state probability distribution is given by
(the ratchet and second, the system is driven either by an

external microscopic periodic forcifd,3], by colored noise ex;{ V(X’)>
[5], or by considering a two-state system where the transition J (x kgT —-V(x)
rates do not obey detailed balarf@. Next to the physical P(x)=| C— kT w(x') dx’ [ ex keT |

applications of these models, it was also argued that they
may be fundamental for the understanding of molecular moy; fol10ws that P(x)#P(x+L) for nonvanishingd, since
tors. L n(x) is positive definite and the integral froxto x+ L does
_Afew years earlier Btiiker showed that state-dependent ¢ yanish. A bounded equilibrium probability distribution is
diffusion can induce transpof6]. This system is defined by oy hossible forJ=0, leading to the well-established result
an overdamped particle in a periodic symmetric potentials ) — ¢ ex —V(x)/ksT] independent of the mobility.
with a perpdlc position-dependent d_|ffu3|on rate. The spatiayence g position-dependent mobility in this model does not
symmetry is broken by a phase shift between the potentighay 1o an equilibrium probability current contrary to a

and the diffusion rate, resulting in a probability current in position-dependent temperature as was shown byikeu
equilibrium. The diffusion rate is related to the mobility [6].

and the temperaturg by the Einstein relatiorD = ukgT. However, a position-dependent mobility does have an im-
Since the mobility is kept constant in this model, the diffu- j, or systems out of equilibrium. Consider a one-
sion rate varies due to a position-dependent temperature a'g‘ilmensional system with the periodic mobiligy(x) = [ 1

the model actually focuses on transport in a periodic tem'+csin(27-rx/L)] and without any potential. The amplitude of
perature field. However, the diffusion rate can vary due Qo moqulationc is restricted to 8c<1. Particles diffuse
position-dependent mobility, even for an isothermal processr.ree|y until they are absorbed at one of the boundaries at

The mobility of a spherical particle in aliquid is given by the | /5 he probanility for a particle initially released &t
Stokes lawu o= (677a) ~ ! with % the viscosity of the liquid —0 to be absorbed at/2 is [10]

and a the radius of the particle. It is well known that this

mobility becomes smaller when the particle approaches a 0 L2

wall surrounding the liquid7,8]. A particle diffusing close p(L/2|0)=f ,ul(X)dX/ f w(x)dx
to a surface has a position-dependent mobility and therefore —L2 —L2

also a position-dependent diffusion rate, although the tem- i
perature is constant. and p(—L/2|0)=1—p(L/2|0). Forc=0.5, the ratio of the

To stress the difference between mobility and temperaProbabilities can be calculated f(L/2|0)/p(~L/2/0)=2.
ture, we set up the same model agtiker [6], however, the The particle is absorbed with higher probability at the bound-
diffusion rate is position-dependent due to the mobility and®y: Where the mobility along the way is higher. Thus the
not the temperature. Consider an overdamped diffusing paf°Pility breaks the symmetry of this nonequilibrium prob-
ticle in a periodic potentialV(x+L)=V(x) with D(x) lem. Note, however, that the integral mobility over a period
= 1u()ksT, w(x+L)=pu(x) and T=const. The Fokker- L is the same in the positive and negative direction so that

Planck equation for this system is given by p(L|0)/p(—L|0)=1. On the other hand, the system would
reach an equilibrium distribution that is constant and inde-

P+d,J=0, (1) pendent of the mobility with reflecting boundaries on both
sides.
In order to take advantage of the mobility in a transport
*Present address: ABB Corporate Research Ltd., CH-540Bnechanism, the system needs to be driven out of equilib-
Baden-Dawil, Switzerland. rium. Transport in a two-state model was studied by Prost
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FIG. 1. The potential and mobility for the two-state model with ,/:X —————— Hem———= HKe———— K=
symmetric potential. In state 1, the potentisblid line) is periodic, 0.0 0 = 2 6 3

while the mobility(dashed lingis constant. In state 2, the potential
(solid line) is constant, while the mobilitydashed lingis periodic.
The transition rates between the states @yeand w,. In order to

. ) FIG. 2. The scaled drift velocity in the symmetric potential
obtain a net curreny; and u, have to be phase shifted.

model for different values of the modulation amplitudeof the

mobility u,. The lines are the direct solutions of the coupled
etal.[2]. They showed that transport can only occur whenggker-Planck equations, the crosses represent the results from the
the transition rates between the states are driven away frofjonte Carlo simulation. The calculations are done for a particle

their spontaneous values by an external action so that Boltzgith radius a=0.215 um in water, L=2a, T=300 K, D,
mann equilibrium is violated and when the spatial symmetry= ks T, Vo,=—10ksT and Q=8. The velocity is the average
is broken by an asymmetric potential. Since symmetry camver 1000 particles after a simulation time of 5 s.

be broken by mobility, the question is whether transport in

this model is possible with a symmetric potential togethervelocity decreases for decreasingnd vanishes for constant
with a phase-shifted position-dependent mobility. The syswu, given byc=0 (not shown. Thus, the important role of

tem is described by the position-dependent mobility is clearly demonstrated.
As an alternative approach, we have investigated(BQq.
P11 dxd1=—w1P1+ wyPy, by Monte Carlo simulations. The particle position at stage

updated according tdl2,13
&tP2+&XJ2=+w1P1—w2P2, (3)

Ax=[KgTdypt+ p(— 3,V JAt+ (2Atu kg T) VX, (6)
with the probability currents

with X a normal distributed random number with zero mean

J1= = pa(X)(P19xV1+kgTaxP1), and standard deviation equal to unity. Note the term propor-
tional to the derivative of the mobility that is important for
J2= = m2(X) (P2, Vo +kgTayP2). (4)  our model. The transition between the states are Poisson, that

o ) ) is, at each time stefit, a particle in state 1 jumps to state 2,

We assume a periodic symmetric potential at state 1 and g p< w,At with R a uniformly distributed random number
constant potential at state 2, while the mobility is constant apenyeen 0 and 1 and vice versa for a particle at state 2. The
state 1 and a periodic function of the position at stat¥/2:  gimylations(crossesexhibit quantitative agreement with the
=Vocos(2m¥/L), ~ V=0,  wu1=po, #2=poll  direct solutions of Eq(3) as can be seen in Fig. 2.
+csin(2mx/L)]. Detailed balance is violated by considering  |n this model, the direction of the probability current is
constant transition rates defined ag=Qw,, wy=const.  defined by the phase shift betwe¥n and ,. The mecha-
The system is illustrated in Fig. 1. _ _ nism can be understood in the following walig. 1): A

A simple analytical solution of Eq(3) is not possible particle at state 1 drifts to the potential minimum. Undergo-
under these conditions. We expand the probability densitiegyg a transition from the potential minimum at state 1 into
in plane wavesP|(x) =Z,a,(n)exp(2mnx/L) with the state  state 2, the particle will experience a higher mobility on the
index=1,2. The resulting set of linear equations togetheright side in this state. Thus, the probability that the particle

with the norm condition falls into the next potential well on the right side when re-
Lo turning to state 1 is higher than falling into the next well on

J' P1(X)+ P,y(x)dx=1 (5) the left side. The symmetry is_ b_roker_l and a net probability

—L/2 current to the right occurs. As it is typical for these two-state

models transition rates, diffusion and period length are
can be solved using standard numerical mettiéds Due to  strongly interconnected. For instance, the system is most ef-
the smooth form of the potentials and mobilities the seriesicient atL w,D,=3.2 forc=0.9.
expansion is well converged at=40. The resulting average  The main result from this section is that the role of sym-
transport velocity = (J;+J,)L as a function of the dimen- metry braking can be overtaken by the mobility. Since this is
sionless raté\w, /Dy is shown in Fig. 2lines) for differ-  the main function of the potential in the model of Presal.
ent values of the modulation amplitudeof w,. The typical [2], one might wonder whether a transport mechanism in a
stochastic-resonancelike behavior is found even gquantitawo-state model without potentials is possible. The simplest
tively similar to the original mode[2]. As expected, the scheme consists of a periodic mobility in state 1 and a con-
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FIG. 3. Potential free two-state model. The mobility is periodic Q/ X
at state 1 and constant at state 2. The transition agtés local > =01y x X
while w, is constant. X
02 x %
stant mobility in state 2 with constant potentials in both X
states: ;= o[ 1+ ¢ sin(2mx/L)], wy= o and V,;=V,=0. 03,55 0.00 0.5 0.50 075
Detailed balance is broken by assuming a local transition rate 8L

01=00(x) with the periodic functiond(x)=1 for |x
—nL|[<L/100 andf(x) =0 otherwise(Fig. 3. FIG. 5. Average velocity in the two-state model without poten-
The local transition rate, is not suited for an expansion tials as a function of the phase-shtL between the mobilityu,
in plane waves and our approach for a direct solution of Egand the local transition rate;.
(3) fails. Therefore we report only results from numerical
simulation where the treatment of local transition rates igohase shifts by w1(x)=Q6(x— ). The transport velocity
trivial. As shown in Fig. 4, transport is obviously possible in as a function ofé/L is shown in Fig. 5. For these simula-
the potential-free model. The average velocity shows qualitions, w, is set to the optimal value while all the other pa-
tatively the same behavior as in Fig. 2; the transport velocityameters remain the same. The velocity vanishessfar=
vanishes forL Jw,/Dy—0 andLw,/Dy— and reaches *0.25 and is positive fos/L>0.25. Depending or, the
one maximal value in between. However, the direction of theprobability current becomes positive, negative, or vanishes.
probability current is opposite. As shown in Fig. 3, a particleThe extremal values for the average velocity are slightly
can make a transition from state 1 to state .dh state 2, shifted fromé=0 and$=0.5.
the mobility is constant and the particle will with equal prob- ~ To summarize, the simplest mobility-induced transport
ability return to state 1 at+A andx—A. Back in state 1, mechanism is an overdamped diffusing particle in a two-
the mobility is in both cases higher on the left side. Thestate model witti) a periodic position-dependent mobility at
particle atx+A will with higher probability make the next one state andii) a local phase-shifted transition rate at the
transition to state 2 at than atx+L. Similar, a particle at same state while mobility and transition rate in the other
x— A will with higher probability make a transition to state 2 State are constant. The direction of the transport current de-
at x—L than atx. There is a net drift toward the left side, Pends on the phase shift between transition rate and mobility.
resulting in a negative probability current. Contrary to previous models, no macroscopic or microscopic
The spatial symmetry is broken in this model by a phasdorces are involved in the transport mechanism. The origin of
shift of the mobility and the local transition rate bf4 at  the transport is a nonequilibrium statistical mechanics pro-
state 1. If the transition rate, is localized at the maxima or C€SS. _ _ _ -
minima of u4(x), one would expect no resulting probability A particle restricted to a one-dimensional diffusion in

current due to the symmetry of the system. We define théhort distance to a rippled surface experiences a position-
dependent mobility, since depending on its location it is

0.00 ' ' . ' . closer to or further away from the surface. The molecular
motor protein kinesin moves close along the periodic struc-
ture of the microtubule and will therefore experience a
position-dependent mobility. The two-state model was pro-
% posed to be a model for molecular motd&y and it was
—0.10 | ] natural to investigate the role of a position-dependent mobil-
x ity in this framework. We have shown that a position-
y dependent mobility can replace the ratchet potential, while
-0.15 | X x %] the qualitative behavior of the motor remains the same. Thus
the main role of the mobility in molecular motors might be in
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X 1 establishing a mechanism for breaking the spatial symmetry.
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Remarkably, members of the kinesin superfamily can move
in different directions, although a given motor only moves in
one directior[14]. The direction is shown to be a function of
the motor domain that is very similar for all the members. In
our model, the transport direction solely depends on the

FIG. 4. The scaled drift velocity for the potential free model. phase shifis between either the local transition and the mo-
The parameters ae= 0.9 = 1000. Other parameters are the sameDbility or the mobility and the symmetric potential. Motors
as in Fig. 2. The average of 5000 particles after a simulation time ofnoving in different directions are distinguished by a differ-

15 s is taken to obtain good statistics.

ent phase shift. Details of the role of a position-dependent
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mobility in kinesin models will be discussed elsewhEt§]. biological, social, and financial systems that are so often out
In conclusion, we have shown that a position-dependendf equilibrium.

mobility can lead to transport very similar to that for models . . . .
based on asymmetric potentials. Mobility can take over the | Would like to thank Birger Bergersen for introducing
role of the potential. However, the underlying mechanism igh€ {0 the subject of molecular motors and for valuable dis-
different; A particle with a position-dependent mobility tends CUSSions. | am also very grateful to Peter F. Meier for hos-
to diffuse toward the higher mobility but is not forced to do pitality at the Physics Institute of the University of Zurich.
so. Mobility-induced transport as a concept of possibilitiesThis work was supported by the Swiss National Science
rather than forces might be a fruitful way to think about Foundation and the Peter Wall Institute for advanced studies.
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